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This paper studies in a general fashion the influence of a homogeneous 
magnetic field on the character of the decay of small perturbations in 
the equilibrium of a conducting fluid in a cavity of arbitrary shape. 
It is shown that for small values of the Hartmann number M there exist 
two types of normal perturbation: “magnetic” and “hydrodynamic”. Per- 
turbations of both types always decay monotonically, Above a certain 
critical value of M = M there exist in the spectrum of normal perturba- 
tions some which can no*longer be referred to as magnetic or hydro- 
dynamic: they cannot be classified thus. These normal perturbations 
oscillate with respect to time; moreover, for values of M not greatly 
exceeding M , their frequency is proportional to (M - M )li2. The 
occurrence gf the critical point is essentially connectgd with the pre- 
sence of two types of perturbation for small M. This paper fully investi- 
gates the nature of the singularity of perturbations at this particular 
point. 

1. The equations for normal perturbations. In the external 
homogeneous magnetic field 

‘Ihe fluid with conductivity a fills a cavity of arbitrary shape cut out 
of an infinitely hard solid with conductivity a’. 

In equilibrium the velocity of the fluid is everywhere equal to zero 

and the magnetic field is equal to the external field. 

For small perturbations of the equilibrium the fluid moves with 
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velocity u and a perturbation magnetic field h appears (in the surround- 

ing material as well as in the fluid). The linearized equations for the 

perturbations are [ll 

in the fluid u=- VP + 0% + Mtrv)h, vn = 0 
(1.2) 

h = v'h + M(rv)u, vh=O 

in the solid Nh = 5 v'h, vh=O (1.3) 

In these equations the following dimensionless parameters occur: 

Here 1 is a characteristic dimension of the cavity, p and q are the 

density and viscosity of the fluid. Assuming N to be constant, we shall 

investigate equations (1.2) as to the manner of their dependence on the 

Hartmann number M. 

At the boundary of the cavity the velocity of the fluid must vanish, 

there must be continuity of the magnetic field, and moreover [21, there 

must be continuity of the component of the electric field tangential to 

the boundary of the cavity. Hence follow the boundary conditions at the 

surface of the cavity: 

u = 0, h = h", (rot h), = 

(We denote by the small superscript circle 

+(rot ho), (1.5) 

the values of quantities 

in the solid.) At infinity h - 0. It is easy to verify that, by virtue 

of the boundary conditions, G5us5’ theorem implies, for example, that 

and simi larly in other 

$ 
6 

-- 
u” s rot h* 

V* 

s 

u- $0 $ 
rot hdV = h.Th*dV + -$ h.Vh*dV 

s 
V s 0 

cases. For brevity we shall write 

in place of %+$JO (1.6) 

For brevity of notation we shall introduce the six-component per- 

turbation u, the operators K and I acting on u, and the gradient of 
“pressure” op 
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u 
z&E II 1 h ’ 

K=[i j], I=[ f i], vp=[ y)q (1.7) 

'Ihen equations (1.2) can be written thus: 

K&C-.- vp + V% + M (74) Iti, viz = 0 (1 .S) 

‘Ihe quantity which is the Hermitian conjugate of (1.7) will be de- 

noted by 

u+ S [u*, h*l cf -9) 

and the scalar product of v with u will be the integral 

(v.u)++um +v*, g*p [;]cw =\{v*.u +g*4l}cw (1.10) 

If we set u * eAt, then from (1.8) we obtain the equation for the 

normal perturbations 

The 

scalar 

Gauss 

-?xl&=LlL~- VP + vu + M h7) 1% vu = 0 (1.11) 

operator L in (1.11) is not self-conjugate. In fact, forming the 
product of the right-hand side of (1.11) with v and applying 

theorem, we obtain 

(v-t - VP + vau + M (y.v) IO = (I--- 774 + Y+-M (pv) 1yj.q 

(with a "minus" sign in front of M) so that the conjugate equations of 

(1.11) are 

- h*.Kv = L+v EE! - vq + v”v - M (yv) Iv, vu = 0 jl.12) 

The fact that L+(M) is equal simply to L(-&f) enables us to conclude 
that if u, defined by (1.7), is the solution of equation (l.ll), then 

(1.12) has the solution 

z)r= Ii* E 3 --h* 
(1.13) 

The solution of the boundary value problem (1.11) or (1.12) with the 

boundary conditions (1.5) gives an infinite sequence of eigenvalues or 

decrements h, and the corresponding normal perturbations uo; simultane- 

ously we also obtain a sequence of conjugate normal perturbations vo 

with decrements ho*. As was shown above 
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Ml the decrements ho may turn out to be “simple”, and then the 

system of quantities u, is complete, i.e. any quantity u can be expanded 

as a series in the uo. The case of degeneracy (multiple decrements) is 

more complicated, and evidently, as will appear below, it can also be of 

great ,interest. 

It is easy to see that each normal perturbation with decrement ho is 

orthogonal in a certain sense to all conjugate normal perturbations 

whose decrements A l are not equal to A,*. Tn fact, from (1.11) and 

(1.12) we obtain 
P 

and consequently, for ho f hF 

(Kz’Kq3) = \{ u.z.us - Nh,.h,}dV = 0 (1.15) 

Finally, from (1.11) it is easy to obtain the integral relations 

(A +k*)\{u+u +Nh*h}dV = [{ ro Perot u + rot h* -rot h} dV (1.16) t 

(h-~*)~{u*dVh*~h)dV=O (1.17) 

From these it follows, firstly, that Re A > 0, i.e. that all normal 

perturbations decay with time and, secondly, that a necessary condition 

for the existence of multiple decrements (i.e. oscillating perturba- 

tions) is the vanishing of the integral in (1.17). 

Suppose that there exists a Hartmann number IV* such that a certain 

normal perturbation of the number a decays monotonically (Im A, = 0) 

when M < I!!~, and oscillates with time when M > M . In the latter range 

of the llartmann number, as follows from (l.l?), the quantity u, is 

orthogonal to its complex conjugate ua*: 

s 
{u,* ‘II= -- Nh,* -ha} CN = 0 (1.18) 

This equation, valid for M > Me, must by continuity be fulfilled 

also at the point AI*,where the integral (1.18) coincides with the 

normalizing integral (since Jm h,(Al*) = 0, then the eigenvector ua can 

be chosen to be real: ua* = ua). Accordingly, if the Hartmann number 

increases initially from zero (when M = 0 all the perturbations decay 

monotonically), then the appearance of each new oscillating perturbation 
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a each time will precede the vanishing of the corresponding normalizing 

integral 

(va {M&Ku, {M,)) = \{uaa - Nha2} dV = 0 (1.19) 

Clearly, this case needs investigating. 

2. The tno types of normal perturbations for small 
Hartmann numbers. If there is no external field, then M = 0, and 
equations (1.11) can be separated into the two unconnected problems 

- hu = v%l- vp, vu = 0; - hNh = vah, vh = 0 (2.1) 

Solving these, we obtain an infinite sequence of magnetic perturba- 

tions hIa, urcr and another infinite sequence of hydrodynamic perturba- 

tions hZa, uza 

h 
0 

Iat %a = 
[ I h I h U2a 

2ctt u2a = I 3 0 (ct=O, P, 2, . * .) (2.2) 
la 

With an external field each motion of the fluid will be accompanied 

by a perturbation of the magnetic field, whilst each perturbation of 

the field will be accompanied by a motion of the fluid, so that the type 

of perturbation is not immediately obvious. However, for sufficiently 

small values of M, simply by continuity, we can speak conventionally of 

"ma~etic" and '~ydr~yn~ic~ perturbations, and we can establish a 

perfectly precise criterion to distinguish between them. Indeed, as was 

shown in 111 (where, however, the existence of two types of perturba- 
tion was not remarked upon), for small values of M there exist expan- 

sions of the normal perturbations as series in hf2, In [II, series of the 

following forms were obtained: 

u2 = u,(O) + Wu2(') + M*U,t2) + . . * f h, = Mh,@) + Mshzf2) + . . . 

As = h,(O) j- Wh2(1) + M%2(2) + . . . 
(2.3) 

When M = 0 only the velocity remains, whilst the magnetic field 

vanishes, so that the perturbations represented by these series are con- 
tinuous extensions of the hydrodynamic perturbations. It is clear that 

in their case, at least for sufficiently small values of bf, the normal- 

izing integrals are positive 

s 
0% - Nh;}dV>O (2.4) 

From the symmetry of equations (1.11) with respect to II and h it 

follows at once that there will also exist other expansions 
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Ul = Mu,(‘) + wup + . . .) h, = h,cO) + Wh,(l) + M4h1(2) + . . . 

A, = %1(O) + M%,(l) + M%,(2) + . . . (2.5) 

The perturbations represented by them tend continuously, as hl- 0, 

to magnetic perturbations and it is clear that for sufficiently small 
values of M their normalizing integrals are negative 

It can be shown, as was done in [ll , that all the expansions (2.3) 

and (2.5) are real, so that as long as they converge there are no 

oscillatory perturbations. ‘lhe perturbations moreover can be classified 

unambiguously into “magnetic” (first subscript 1) or ‘hydrodynamic” 
(first subscript 2). As has already been shown, they are orthogonal 

among themselves and can be normalized, so that 

PhJkp) E \ (u,o.ll@ - Nhmolhd dv = (-)” amnaap 
(m,n=l,2;a=O,i,2,...) (2.7) 

Ihe situation described above will persist up to the point when, for 

a certain M = MS, the normalizing integral of any normal perturbation 

does not vanish. ‘lhe decrements cannot then remain simple. Indeed, then 

all the normal perturbations at MI would be orthogonal to one another 

as before, whilst one of them (that for which the normalizing integral 

is zero) would still be orthogonal even to itself. ‘lhe system of normal 

perturbations consequently ceases to be complete.* ht this is improba- 

ble on physical grounds, since any small perturbation must be composed 

of the normal perturbations described by equations (1.11). 

It is evidently necessary to investigate the point of confluence of 

the two decrements. Here the following two cases may occur: 

l It is easy to see that if for unQ. 

(%Ul *Ku,&=0 

then this quantity cannot be expanded in terms of u np; all the co- 

efficients 0 
4 

of the series 

%n, = x %!3%,p 
n. P 

turn out to be zeros. 
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1. At the point of confluence M there exist two eigen solutions of 

the problem (l.ll), i.e. two norma 1 perturbations. The requirement 
formulated above concerning completeness of the system of normal per- 
turbations enables us to conclude that in this case neither one of the 
normalizing integrals can vanish at the point M . * 

2. At the point of confluence of two decrements there do not exist 

two normal perturbations. ‘Ihis case is studied in the following section. 

3. Branch points. The fact that the operator L in problem (1.11) 

is not self-conjugate has already been mentioned in Section 1. It is 
well known l-31 that the number of eigenfunctions of such an operator, 
corresponding to a degenerate eigenvalue, may be less than the degree 
of degeneracy. For the given problem it is sufficient to consider the 
case of mu1 tiplicity two, when the operator L transforms two linearly 
independent quantities u1 and u2 into linear ccmbinations of themselves. 
One of them can always be chosen so that it is an eigenfunction for L: 

Lu 1= - ?bKUl, Lu, = - p&L, + VKUl (3.1) 

If p f h, then it is easy to see that a certain linear combination 
of u1 and up is a second eigenfunction for L. Accordingly, for a h with 
degeneracy of degee two, there are two functions (the first of them is 
called the eigenfunction, and the second the associated function), for 
which 

Lu, = - hKul, Lu, = - liKu, + Ku, (3.2) 

(By changing the normalization of ul, we can always make v = 1.) 

It proves to be more convenient, in place of the eigenfunction and 

the associated function, to consider their sum and their difference, 
which we shall denote as before by u1 and uz. Obviously for them we 
have the equations 

LU, = - hKu, + -+ K (ui + ua), Lu, = - Wu, - $K (~1 + ~2) (3.3) 

and for their conjugates 

L-+, = - h*K% + $K (VI + vJ, L+v, = - h*Kv, - -$ K (vr + u2) (3.4) 

From (3.3) and (3.4) it follows that 

(VI-KU,) = (vz.Ku,), (vi-Ku,) + (v,.Ku,) + 2 (v,.Ku,) = 0 (3.5) 
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Without affecting u1 and u2, we can replace v1 and v2 by linear com- 

binations of them 

vl - au1 + bvz, va 4 - bv, + (a - 2b) v, (3.6) 

(where a and b are arbitrary), again satisfying the equations (3.4). 
‘Ihe constants a and b can be selected so that 

(VI ‘KU,) = 0 (3.7) 

and then from (3.5) it follows that 

(VI -Ku,) = - (vg ‘KU,) (3.8) 

In the latter notation the sum u1 + u2 is the eigenfunction of the 

operator L, whilst v1 + u2 is that of the operator L+. Taking into con- 

sideration (3.7) and (3.8), we find that the normalizing integral for 

the eigenfunction is equal to zero 

((25 + va) *K 0% + a?)) = 0 (3.9) 

Accordingly, the vanishing of the normalizing integral is necessarily 

connected with the confluence of two eigenvalues and the disappearance 

of an eigenfunction. The direction of further investigation is now clear. 

Let us suppose that at the point M = M, all the decrements are real 

and all except one, namely A+, are simple. The multiplicity of A is 

equal to two. To this decrement there correspond two “quasinormal” per- 

turbations, satisfying equations of the form (3.3) 

(3.10) 

- 5,Ku,o = - VP,, + v%o + Mat (‘I .v) lu,o + f K ho + use) 

- L+cKu,o = - vpso + v’u,, + M, (r.v) lu,o - $ K ho -I- GO) 

The conjugate quasinormal perturbations, satisfying the same equa- 

tions, but with I!!* replaced by Jf*, will be chosen SO that 

(&no 9 Ku,o) = (--_)“hm (nz, u = 1, 2) (3.11) 

It is easy to see that the time-dependent solutions of equation 

(1.81, corresponding to A+, are 

t+** (uro + uzo). t+J (uro - 44 + k+J (ulo + uzo) (3.12) 

To the simple decrements h,,(n = 1, 2; a > 0) there correspond the 

normal perturbations una, for which 
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- LXunPr = - VJhu + VzUna + M* (+f’ V) Iha (3.13) 

All the normal and quasinormal perturbations form a complete system 

functions 

h *, U109 %OP h 1((1, Una (n = 1, 2; a = 1, 2, . . .) 

mutually orthogonal and normalized according to the condition (2.7). 
Thus, any function u can be expanded in a series of the form 

u = x b,,u,,,, b,, = (-l)n (v,,, Ku) (n = i, 2; u = o, 1, 2, . . .) (3.14) 
n, 0 

In what follows the second index (zero) for the quasinormal per- 
turbations will be dropped. 

Let us now consider values of h4 close to M . For these values there 

does not exist an expansion of u and h in int&ral powers of c =(M-Me), 
i.e. the point M* is singular. In order to become convinced of this, 

let us rewrite equation (1.11) in the form 

- &Ku = - VP + VQ + M, (YV) lu + 5 (TV) lu (3.15) 

and in it set 

u = u(O) + &(l) + . . . * h = h, + #l) + . . . (3.16) 

Multiplying (3.15) by u1 + v2 and collecting terms not containing c 
we obtain, by virtue of (3. lo), u(O) * ( u1 + u,) . From a consideration 
of the terms containing the first power of c it follows that 

But the integral in (3.17) can vanish only by pure chance. In fact 
it is not difficult to see from (1.11) and (2.1) that this would indi- 
cate that when M= 0 two perturbations of different types have the same 
decrement 

For such a coincidence there is, of course, no physical basis at all: 
in the absence of an external field the magnetic perturbations are in 
no way connected with the hydrodynamic ones. 

We shall show that the singular point I!!* is a branch point, about 
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which the degenerate decrements and the normal perturbations can be ex- 

panded in integral powers of the quantity 

‘1 = (M - M*)‘/* (3.18) 

i.e. there exist series of the form 

0 = u(O) + qd’) + q%(2) + . . . , h = A, + g!” + q%f2) + . - . (3.19) 

satisfying equations (l.ll), and corresponding series for equations 

(1.12). The substitution of these series in the equations and the 
collection of terms with the same powers of q gives a sequence of equa- 

tions which we shall not write down in general form. The equation of 

zero order is 

- h,Ka@) = - vp’o’ + v2u(o) + M, (m) lu(“) (3.20) 

From this it follows (see (3.10)) that 

u(O) = u,+ Ut (3.21) 

‘Ihis could have been foreseen, moreover, since only the sum of the 

quasinormal perturbations changes with time according to the purely ex- 

ponential law, which overns the normal perturbations when hf < ye. In 

order that all the n(‘) in the expansion (3.19) shall not contain 

(ul + u2), we need an equivalent change of the normalization. Then 

U(k) = b@) (Ul - z&a) + 2 tgy Una (3.22) 
n. a>0 

and consequently 

(V,.KU(k)) = (v,.Ku(“)) = - b(k) (3.23) 

Let us now consider the first order equation 

- h,~~cl, + vpw - v2u(l) - M, (7-v) I&) = h”‘K (ul + ~2) (3.24) 

Taking the scalar product of this with u1 (or v,), we obtain 

(K (VI + V2) * u(1)) = - 2h”’ 

i.e. according to (3.23) 

p = h'l' (3.25) 

whilst, multiplying by u,o (a > 0) 

( Vn, .Ku(l)) = bz: = 0 (3.26) 
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Consequently 

0 = A”’ (Ui - o*) 

where A1’) remains indeterminate, 

‘Ihe second order gives 

- h,Ku(2~ + vp@) - $W - M* (r.v) f?&@~ = 

= A%W) $ Q2?K (Ui -t_ 243 + (r l v) I (Ug + u,) 

Taking the scalar product of this with ful + Q, we obtain 

[a’“‘]* = f(% f ~2~*~~*V~~ ki- a = --B2 

whilst multiplying by (V~ - uz), we get 

b’2’ _i= $_@, - ((v i- %.k(r*vU (@r + r&H 

multiplying equation (3.28) by unoL would give b,“’ and so on. It 
is evident that in this manner we can obtain all the coefficients of 
the series (3.19). 

When M < MqS i.e, for purely imaginary 

rl = is (8 > 01 (2.W 

according to our assumption we must obtain real normal perturbations, 

corresponding to two different real decrements. 

Their expansions, as now determined (formulas (3.21), (3.2’7) and 

(3.29) 1, have the forms 

%o W* - s’) = h, + eB -j- l . *, 

%omf* -87 = @I + u2) + a @I - 4 + l l l (3.31) 

h 9o=h*-&t_..., ugo = (ur + zza) - eB (2~~ - us} + . . . (3.32) 

Accordingly, B is real, i.e. the integral 

((% + uB)* (r **a) I(% + aa)) < 0 

Choosing B > 0, from (3.31) and (3.32) we find that 

(3.33) 
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‘lhis leads to an important result: the critical point is the con- 
fluence of decrements of essentially 
different types - magnetic and hydro- 4 A 
dynamic (see figure). 

On the other side of the branch point, 
i.e. when M > M+ q is real and we obtain --“__________ 
two complex conjugate decrements with 
corresponding normal perturbations. Their 
expansions close to Ma are 

I 
~(L2,O = h, & iBq + . . ., (3.35) t 

I% M 

u0,2) 0 = h + u2) f ih (uI - u2) + . . o 

so that their variation with time is oscillatory with frequency given 

by 

Bq = B (M - M,)‘/x (3.36) 

I offer my profound thanks to V.S. Sorokin for suggesting the theme 
of the present paper, for his attentive advice and valuable assistance. 
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